New courses are available beginning with the fall term in which they appear in the University Catalog.

SUBJECT PHYS COURSE NO.* 1000 CREDIT HOURS 1 ACADEMIC YEAR TO BE ADDED TO THE FILE Fall 2017

*Justify level if 1000 level+ and no co- or prerequisites

CLASS HOURS 15/semester LECTURE HOURS 15/semester LAB HOURS 0/semester CONTACT HOURS (CEU ONLY) N/A

DEPARTMENT Physics and Space Sciences SCHEDULE TYPE Lecture (A)

☐ COLLEGE OF AERONAUTICS – 23
☐ COLLEGE OF SCIENCE – 26
☐ NATHAN M. BISK COLLEGE OF BUSINESS – 24
☐ EXTENDED STUDIES/NMB COLLEGE OF BUSINESS – 90
☐ COLLEGE OF ENGINEERING – 1
☐ SCHOOL OF COMPUTING – 29
☐ COLLEGE OF PSYCHOLOGY AND LIBERAL ARTS – 25
☐ SCHOOL OF HUMAN-CENTERED DESIGN, INNOVATION & ART – 28

COMPUTER TITLE Physics Review

Restricted to 25 characters, including spaces

CATALOG TITLE Physics Review

CATALOG DESCRIPTION OF COURSE Restricted to 350 characters, including spaces

Provides a physics review for transfer students who have only completed a three-credit-hour equivalent class for PHY1001 (four credit hours). Includes supplementary materials from PHY1001. (Requirement: For transfer students only.)

This description has been approved by the catalog office

[Signature] 2/14/2017

Catalog & Curriculum Manager

In addition, please attach a course syllabus and/or more detailed description.

REQUIREMENTS
☐ Prerequisite __________ Course Number __________
☐ Corequisite __________ Course Number __________
☐ and or

☐ Prerequisite __________ Course Number __________
☐ Corequisite __________ Course Number __________
☐ and or

☐ Prerequisite __________ Course Number __________
☐ Corequisite __________ Course Number __________
☐ and or

☐ and or

ADDITIONAL RESTRICTION ☐ and ☐ or For transfer students only

[Signature] 2/15/17

Originator

GRADING TO BE ISSUED
☐ A, B, C, D, F
☐ A, B, C, D, F, CEU/Audit
☐ CEU
☐ S, U
☐ P, F
☐ Other

If this course replaces a course currently offered in BANNER, please indicate old course information and the date/term the course may be removed from the system.

SUBJECT Alpha Prefix (e.g., CSE) __________ COURSE NO. (e.g., 1301) __________ TERM TO INACTIVATE __________

☐ Yes ☐ No Will this course be used to measure program-level student learning outcomes? If yes, review and signature required.

☐ Yes ☐ No Will this course be used to satisfy the scholarly inquiry requirement? If yes, attach "Q" materials for review.

☐ Yes ☐ No Will this course impact any existing programs? If yes, attach "Changing Graduation Requirements" form for each program impacted.

APPROVALS: On completion of registration and course number verification, affix appropriate signatures as indicated, and submit to the Office of Graduate Programs, or Undergraduate Curriculum Committee Chair for placement on agenda.

[Signature] 2/16/17

Chair, Graduate Council Date

[Signature] 2/16/17

Chair, Undergraduate Curriculum Committee Date

[Signature] 2/16/17

OR

[Signature] 2/16/17

Date

**Chief Academic Officer

CATALOG & CURRICULUM MANAGER

These changes/additions have been made for the University Catalog and entered into the BANNER term named above.

[Signature] Date

Catalog & Curriculum Manager

REGISTRAR’S USE ONLY

SCARSE SCADTL SCAPREQ SCABASE ACALOG

SCABRES CIP Code Operator Init. Date

Florida Institute of Technology • Office of the Registrar

150 West University Boulevard, Melbourne, FL 32901-6975 • (321) 674-8114 • Fax (321) 674-7827

RGR-297-816
Physics Review
PHY1000: Jan. 9 – May. 11, 2017
Lectures: F 10:00 - 10:50AM, F. C. Crawford Building 112

Basics:

Instructor: Dr. Csaba Palotai
Office: Olin Physical Sciences Building (PSB) 335
Contact Info: Email: cpalotai@fit.edu by far the easiest way to reach me.
Telephone: 321-674-8081
Office hours: Mon 11am-Noon, Wed 2-3pm, or by appointment

Course WWW site: http://www.masteringphysics.com
The course code for registering is “PHY2017PALOTAI”

Canvas:
This is where course files and assignment grades will be posted.

Course text: University Physics, by Young and Freedman (any recent edition)

Course description:

This class is designed for transfer students who have been awarded only three out of four credits for introductory physics. We will cover course content from PHY1001, as needed, in order to fulfill the graduation requirements.

Course grade:

Your final grade for the semester will be INDEPENDENT of the curve will be calculated from the following:

Homework: ..6 × 10%
In-class assignments:10%
Final exam: ..30%

Expected work: Homework problems will be posted on Canvas and they will need to be completed individually and they will count 10% each towards the final grade. No late homework will be accepted so please make sure to submit the assignments on time. Additional homework problems will be posted on canvas and Mastering Physics. They are not mandatory to solve and they will not be graded but they are highly recommended. I think that one can learn physics best through practice. The more problems you solve the easier you will recognize what laws and equations you need for a certain types of questions. You will find the solutions faster and it is more likely that the solutions will be correct. If you have understood the underlying concepts the exercises are straightforward, but if you are trying to guess the “right equation” you will fail unnecessarily. Also keep in mind that the exam questions make heavy use of these homework problems! There are in-class answers slips in the classroom on the podium, please fill out one every time you come to class and hand them in at the end of the class with answers to the in-class assignment questions. There will be a final exam at the end of the semester that will be cumulative and it will count as 30% of the final grade.
Other Policies:

Missed work policy: Making up missed work will only be permitted for University-sanctioned activities and bona fide medical or family reasons. Authentic justifying documentation must be provided in every case (and in advance for University-sanctioned activities). At the discretion of the instructor, the make-up may take any reasonable and appropriate form including (but not limited to) the following: giving a replacement exam, replacing the missed work with the same score as a later exam, allowing a ‘dropped’ exam, replacing the missed work with the quiz average.

Collaboration policy: On exams, no collaboration is allowed. On homework, limited collaboration is encouraged, but if you work with someone, it should be obvious to me that you didn’t cheat and just copy answers. It is your responsibility to make sure that your work doesn’t ‘by chance’ match anyone else’s. On in-class assignments that are group assignments, obviously you can collaborate. On other in-class assignments, assume that no collaboration is allowed unless I say otherwise.

Academic Honesty: Academic dishonesty, including cheating, plagiarism, and fabrication is a serious offense that will result in contacting the Dean of Students and others according to campus policy. The policy, procedures, and charges can be found in the Student Handbook http://www.fit.edu/studenthandbook/.

Disability access statement: FIT is committed to providing reasonable accommodations for all persons with disabilities. This syllabus is available in alternate formats upon request. Students with disabilities who need accommodations in this course must contact the professor at the beginning of the semester to discuss needed accommodations.

Schedule: (The schedule below is just a guideline and it is subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Units, physical quantities, Vectors.</td>
</tr>
<tr>
<td>2</td>
<td>Motion along a straight line.</td>
</tr>
<tr>
<td>3</td>
<td>Motion in two and three dimensions.</td>
</tr>
<tr>
<td>4</td>
<td>Newton’s laws of motion.</td>
</tr>
<tr>
<td>5</td>
<td>Applications of Newton’s laws.</td>
</tr>
<tr>
<td>6</td>
<td>Work and kinetic energy.</td>
</tr>
<tr>
<td>7</td>
<td>Potential energy.</td>
</tr>
<tr>
<td>8</td>
<td>Energy conservation.</td>
</tr>
<tr>
<td>9</td>
<td>Momentum & impulse.</td>
</tr>
<tr>
<td>10</td>
<td>Collisions and center of mass.</td>
</tr>
<tr>
<td>11</td>
<td>Rotation of rigid bodies.</td>
</tr>
<tr>
<td>12</td>
<td>Dynamics of rotational motion.</td>
</tr>
<tr>
<td>13</td>
<td>Equilibrium and elasticity.</td>
</tr>
<tr>
<td>14</td>
<td>Periodic motion.</td>
</tr>
<tr>
<td>15</td>
<td>Gravitation.</td>
</tr>
</tbody>
</table>

Syllabus:
This syllabus is subject to change. The latest version will always be available on canvas.
MEMORANDUM

Date: Thursday, February 16, 2017
To: Dr. M. Archambault, Chair UGCC
CC'd: Dr. Hamid Rassoul, Dean COS. Dr. C. Palotai, PSS UGCC representative.
From: Dr. D. Batcheldor, Head of Physics and Space Sciences.
Re: New PSS Class: PHY 1000 Physics Review.

Dear Dr. Archambault,

Please find included an ANC request for the Undergraduate Curriculum Committee meeting on February 24th, 2017.

This new class is being offered in response to undergraduate transfer students coming from schools that only offer 3-credit hour equivalents for our 4-credit hour PHY 1001 Physics 1 class. PHY 1000 offers these students the opportunity to gain a further 1 PHY credit hour in order to meet the requirements needed for graduation from an academically rigorous program.

This course has been designed to take the fundamentals of PHY 1001 in a condensed form and appropriately assess the PHY 1000 students in an equivalent manner.

In support of these changes we include the following documentation and forms:

1) ANC Form.
2) Example syllabus.

Please let us know if there is anything else that we can provide to help implement this change for the University Catalog.

Respectfully submitted:

[Signature]